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ABSTRACT 

This study examines the application of Latent Dirichlet Allocation (LDA) and K-Means 

clustering techniques to analyze the Learning Path Index Dataset, with the aim of 

identifying and categorizing data science education skills. By employing these 

machine learning models, the research reveals distinct skill patterns and clusters that 

characterize the dataset, highlighting prevalent skills and potential gaps in data 

science education accessible through open educational resources (OER). The 

findings demonstrate specific clusters of beginner to advanced data science topics, 

offering insights into the accessibility and distribution of educational content. These 

results can guide educators and platform developers in enhancing the structure and 

delivery of data science education, thereby improving learner outcomes and resource 

allocation. The study also discusses the broader implications for educational strategy 

and policy, emphasizing the role of targeted analytics in optimizing educational 

offerings in an increasingly digital landscape. Future research directions include 

expanding the dataset and applying similar analytical frameworks to other fields within 

open education to further validate and refine these findings. 

Keywords Data Science Education, Topic Modeling, Latent Dirichlet Allocation (LDA), K-

Means Clustering, Open Educational Resources (OER) 

Introduction 

The global demand for skills in data science, machine learning, and artificial 
intelligence (AI) has surged dramatically in recent years due to the rapid pace 
of technological advancement and AI's integration into diverse sectors. This 
growing demand is evidenced by an increasing number of job advertisements 
seeking individuals with expertise in these areas, demonstrating the necessity 
for a blend of both technical and business-oriented capabilities. Verma et al. [1] 
emphasize the significance of having a strong grasp of business concepts for 
strategic decision-makers, alongside technical proficiencies in data analytics 
and visualization, to maximize the efficacy of AI solutions. Organizations across 
various industries are striving to leverage AI-driven innovations to enhance 
productivity and drive innovation, further fueling the demand for professionals 
proficient in these domains [2]. 

In response to this rising demand, the reliance on online resources for skill 
acquisition has grown notably, especially with the accelerated shift to online 
learning environments triggered by the COVID-19 pandemic. Educational 
institutions have adopted online platforms to maintain continuity and broaden 
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access, showcasing the benefits of flexibility, accessibility, and global reach in 
digital education [3]. Massive open online courses (MOOCs) have emerged as 
pivotal tools for democratizing access to high-quality educational materials, 
enabling learners to progress at their own pace while customizing their 
educational experiences to align with individual goals [4]. However, as Zhao and 
Liu [5] note, existing online educational platforms often struggle to keep up with 
the surging demand for data access, highlighting the need for robust 
infrastructures to manage and disseminate educational content efficiently. 

Navigating educational resources in open access environments presents a 
range of challenges for learners, despite the transformative potential of 
platforms like MOOCs (Massive Open Online Courses) and open educational 
resources (OER). While these tools have democratized access to learning and 
bridged geographical and socio-economic gaps, the overwhelming volume of 
available resources can lead to significant difficulties. Learners often experience 
information overload, which complicates their ability to synthesize knowledge 
from diverse sources. Evans et al. [6] observe that open access platforms, while 
enhancing educational equity, sometimes overwhelm users with excessive 
information, making it challenging to integrate these resources into structured 
learning paths. The lack of a consistent peer review process among many open 
access materials further complicates the issue, as learners must assess the 
quality and relevance of available content on their own, leading to inconsistent 
educational experiences [7]. 

Language barriers further exacerbate these challenges, limiting access for non-
English-speaking learners, who may find it difficult to engage fully with 
predominantly English-language resources. Montoya and Soledad [8] 
emphasize that this language disparity can hinder learners' ability to leverage 
high-quality educational materials, effectively marginalizing a segment of the 
global learning community. Thakran and Sharma [9] expand on this by 
highlighting how geographical and demographic barriers, compounded by a 
scarcity of qualified educators, can make access to quality open resources even 
more complex. Furthermore, differing cultural contexts and educational 
practices may not align with the formats and approaches used by open 
resources, reducing their efficacy for diverse learners. 

The transition to online learning, especially during the COVID-19 pandemic, has 
shed further light on the challenges of open access education. While online 
platforms offer flexibility, Nsengimana et al. [10] note that learners often struggle 
with the self-discipline and motivation required for effective learning in less 
structured environments. This lack of structured guidance can lead to isolation, 
particularly for those more accustomed to traditional, face-to-face learning 
settings. Kurelović [11] points out that a shift to open educational resource 
policies within institutions often faces resistance from educators and learners 
who are entrenched in conventional teaching methods and cultural norms. 

The integration of technology into education also introduces barriers that must 
be addressed. Although OER and online learning can enhance educational 
access, their effectiveness often hinges on the technological proficiency of both 
educators and learners [12]. Unequal access to necessary technology and 
reliable internet connectivity remains a critical obstacle, creating a digital divide 
that hampers learners' ability to engage with these resources. Addressing these 
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disparities is crucial for ensuring that the potential benefits of open educational 
resources reach a broader and more inclusive audience. 

The Learning Path Index Dataset functions as a curated resource specifically 
designed to improve access to high-quality learning paths in the fields of data 
science, machine learning, and AI. It provides a structured repository that 
empowers both educators and learners to efficiently navigate the extensive 
range of available educational resources. This dataset addresses the increasing 
demand for personalized educational experiences, which allow learners to tailor 
their paths based on individual goals and learning preferences. As Joseph et al. 
[13] emphasize, the ability to customize learning content enhances student 
engagement and success by aligning educational materials with personal 
interests and objectives. The structured nature of the dataset ensures that users 
can seamlessly find, evaluate, and engage with resources that are most relevant 
to their learning journeys, reducing the complexity often associated with 
navigating vast digital learning landscapes. 

A key strength of the Learning Path Index Dataset lies in its systematic 
organization of resources according to specific criteria, such as subject area, 
complexity, and user preferences. This method streamlines the process of 
identifying appropriate learning paths, making it especially valuable in open-
access environments where an overwhelming volume of information can hinder 
effective learning. As noted by Joseph et al. [13], the challenge of sifting through 
extensive educational material is a common obstacle for learners. By offering a 
structured framework, the dataset mitigates information overload, enabling 
learners to concentrate on high-quality, targeted content that aligns with their 
needs. Such a focused approach not only maximizes learning efficiency but also 
ensures that learners have access to relevant, curated resources designed to 
support their educational progress. 

Data mining serves a pivotal function in evaluating and optimizing educational 
content by enabling the analysis of large volumes of educational data to uncover 
patterns and derive actionable insights. Within educational environments, this 
process—often referred to as Educational Data Mining (EDM)—facilitates the 
improvement of both skills coverage and accessibility. Castro et al. [14] describe 
how EDM focuses on extracting meaningful patterns from data generated 
through learning interactions, thereby enhancing the quality of educational 
offerings. This application of data mining provides institutions with a framework 
to assess and refine the effectiveness of their educational content. Specifically, 
it allows for a detailed examination of how well specific skills are covered in 
educational materials, which can help identify gaps in content delivery. Brambila 
and González [15] illustrate how data mining techniques, such as association 
rule mining, can reveal relationships between learner characteristics and 
academic outcomes, thereby empowering educators to tailor content more 
effectively to meet diverse learner needs. 

Optimizing the accessibility of educational content is another critical dimension 
where data mining has a transformative impact. Analyzing demographic and 
engagement data offers institutions a window into the barriers that learners face 
in accessing educational resources. Wanjau et al. [16] demonstrate the potential 
of predictive models to uncover enrollment trends, particularly in STEM fields, 
providing valuable insights into how courses can be made more accessible to 
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underrepresented groups. This data-driven approach enables institutions to 
design targeted interventions that address access disparities and promote 
inclusivity, ensuring that learners from diverse backgrounds can acquire 
essential skills. Additionally, by examining learner engagement patterns, 
educational content can be adapted and refined to enhance its relevance and 
accessibility, ultimately leading to more equitable educational outcomes. 

The primary objective of this study is to identify patterns in skill coverage within 
open-access data science resources by employing Latent Dirichlet Allocation 
(LDA) and K-Means clustering. This analytical approach allows for the extraction 
of latent topics and skill clusters, offering insights into the structure and focus 
areas of data science educational content. The use of LDA facilitates the 
identification of underlying themes and skill domains within the Learning Path 
Index Dataset, while K-Means clustering groups courses and learning materials 
based on their topical similarities. Together, these methods provide a 
comprehensive view of how data science skills are represented, enabling the 
categorization of resources into distinct learning pathways. Such a data-driven 
analysis highlights existing strengths and potential gaps in skill coverage, 
offering a foundation for improving educational resources. 

The contributions of this study lie in enhancing the organization and accessibility 
of data science education resources within open-access environments. By 
leveraging advanced data mining techniques, the study aims to create a more 
structured and navigable framework for learners and educators alike. The 
findings offer practical implications for the design and curation of educational 
content, ensuring that resources align more effectively with learners' needs and 
industry demands. Improved organization and targeted skill coverage foster 
greater accessibility, reducing the barriers that learners often encounter in 
navigating a vast array of open-access materials. As such, this study not only 
contributes to the optimization of existing educational resources but also 
promotes equitable access to high-quality data science education for diverse 
learning communities. 

Literature Review 

Data Science Education Trends and Challenges 

The literature on online education in data science and artificial intelligence (AI) 
reveals a complex and evolving landscape, shaped by issues of accessibility, 
inclusivity, and the effectiveness of instructional approaches. As the transition 
to online learning accelerated in response to the COVID-19 pandemic, 
educational institutions faced increased pressure to provide equitable and 
effective learning experiences. Accessibility remains a significant hurdle, 
particularly for students in developing regions. Aboagye et al. [17] point out that 
inadequate internet connectivity and limited access to digital devices 
disproportionately impact learners from marginalized communities, 
exacerbating educational inequalities. Zhou [18] highlights how institutional 
infrastructure deficiencies, such as insufficient library resources to support 
remote learning, further impede students' ability to fully participate in data 
science and AI courses. These barriers underline the critical need for targeted 
interventions to bridge the digital divide and ensure all learners can engage 
meaningfully with online educational resources. 
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Inclusivity is also a critical aspect of online education, influenced by the design 
and delivery of learning materials. Ullah et al. [19] emphasize the importance of 
motivational factors in fostering student engagement within digital learning 
environments. The absence of traditional face-to-face interactions often 
diminishes learners' sense of community and motivation, which are vital for 
successful learning. Addressing this challenge requires the creation of inclusive 
and adaptable online platforms tailored to diverse learning needs. Muslimin and 
Harintama [20] argue that flexibility in online learning can empower students to 
choose conducive learning environments, thereby enhancing their educational 
experiences. However, they stress that this flexibility must be paired with 
sufficient support systems to ensure that all students can thrive in online 
settings. 

The effectiveness of online education in data science and AI depends on the 
quality of instructional design and the pedagogical strategies employed. Paudel 
[21] asserts that effective online courses should incorporate interactive 
elements, such as simulations and collaborative activities, to foster engagement 
and improve learning outcomes. The rapid shift to online learning during the 
pandemic has led educators to adopt innovative and interactive teaching 
methodologies, which often surpass traditional approaches in engaging 
students. Akbar et al. [22] found that the quality of video content and the overall 
user experience significantly influence learner perceptions of online platforms. 
High-quality, adaptable content is essential for maintaining engagement and 
ensuring the effective delivery of complex data science concepts. 

Technology plays a pivotal role in enhancing the educational effectiveness of 
online learning. Adedoyin and Soykan [23] emphasize the necessity for 
educators to understand both the potential and limitations of online learning 
technologies to design impactful courses. This includes recognizing the value of 
synchronous and asynchronous learning modalities, which cater to different 
learning styles and preferences. Additionally, the integration of learning 
analytics offers valuable insights into student performance, enabling timely 
interventions and personalized support [24]. Such data-driven approaches are 
essential for continually refining online educational programs and ensuring their 
alignment with learner needs and industry demands. 

Topic Modeling in Education 

Latent Dirichlet Allocation (LDA) is a widely used statistical model in educational 
content analysis for identifying latent topics and common themes within large 
collections of text data. LDA conceptualizes documents as mixtures of topics 
and topics as mixtures of words, which allows researchers to uncover hidden 
structures in unstructured text. This capability is particularly useful in educational 
contexts, where vast amounts of data—from course materials to student 
feedback—need to be analyzed for meaningful insights. Schwartz et al. [25] 
demonstrated the power of LDA by extracting significant topics from extensive 
educational materials, such as chapter-length texts, thereby revealing thematic 
structures that can inform curriculum design. This process not only facilitates a 
deeper understanding of content focus areas but also helps educators align their 
teaching materials with the identified themes, ensuring that the curriculum 
remains relevant and comprehensive. 
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In addition, LDA plays a critical role in curriculum development through its ability 
to analyze student responses and feedback. Insights drawn from LDA can help 
educators discern which topics resonate most with learners and which areas 
may require further emphasis or additional resources. Inoue et al. [26] illustrated 
this utility by applying LDA to free-text responses, revealing how the COVID-19 
pandemic impacted nursing research. The uncovered themes informed 
adjustments to educational practices, underscoring LDA’s potential to guide 
real-time curriculum changes based on learner feedback. This adaptability 
ensures that educational content evolves to meet the changing needs and 
expectations of learners. 

Beyond identifying specific topics, LDA can reveal common themes that span 
across various educational materials, thereby enriching the learning experience. 
Fang et al. [27] employed LDA to analyze library electronic references and 
identified evolving research topics and patterns, a methodology that can 
similarly be applied to educational content. Understanding these overarching 
themes enables educators to foster interdisciplinary connections, creating 
integrated learning experiences that bridge different courses or disciplines. Such 
insights can promote a more cohesive educational framework, enhancing 
student engagement and fostering a broader understanding of complex subject 
areas. 

Insights from LDA analyses can also inform the design of educational 
interventions aimed at boosting student engagement and learning outcomes. 
Yin and Yuan [28] highlighted the potential of LDA to detect trends in blended 
learning environments, helping educators adapt their teaching strategies to 
better align with students' evolving needs and interests. This adaptability is vital 
in an educational landscape that is continuously reshaped by technological 
advancements and shifting learner preferences. However, it is important to note 
that LDA's effectiveness relies heavily on the quality and relevance of input data. 
Guo [29] cautions that variations in dataset characteristics can impact LDA 
performance, while Huang et al. [30] emphasize the need for expert input to 
determine the optimal number of topics, ensuring that the identified themes 
accurately reflect the content.  

Latent Dirichlet Allocation (LDA) is a generative probabilistic model that has 
become an essential tool for topic modeling across various domains, including 
educational research. At the heart of LDA is the probabilistic relationship 
between words and topics, represented mathematically as P(w|z) \), where w 
denotes a word, and z represents a topic. This formula encapsulates the 
probability that a word belongs to a given topic, offering a means of identifying 
and understanding the thematic structure of large text corpora. LDA assumes 
that documents are composed of multiple topics and that each topic is 
characterized by a distribution of words. This approach enables researchers to 
model the hidden thematic layers in text data and infer patterns that are not 
immediately visible. Pérez-Encinas and Rodríguez-Pomeda [31] illustrate how 
this probabilistic framework allows for the extraction of meaningful themes, 
aiding in content analysis and revealing the latent structures within educational 
materials. 

In the LDA process, each document d is associated with a distribution over 
topics, denoted as P(z|d) \), which is sampled from a Dirichlet distribution. For 
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each word w in the document, a topic z is then chosen according to this 
distribution, and the word itself is generated based on the topic-specific 
distribution P(w|z) \). This generative process highlights LDA's ability to 
represent documents as mixtures of topics and to describe topics in terms of 
probabilistic distributions over words. Fang et al. [27] explain that this 
methodology allows LDA to uncover latent themes, making it a powerful tool for 
analyzing complex educational content, such as course descriptions or student 
feedback. The probabilistic nature of LDA ensures that topics reflect the inherent 
variability and diversity present in textual data, offering a robust mechanism for 
thematic exploration. 

The distribution P(w|z) plays a pivotal role in LDA's effectiveness as a topic 
modeling approach. It facilitates the identification of the most representative 
words associated with each topic, thereby offering insights into the primary 
themes and focus areas within a corpus. In educational contexts, this capability 
can be used to analyze course materials or student responses to reveal 
prominent themes that resonate with learners [26]. By examining words with 
high probabilities under specific topics, educators gain a better understanding 
of the key concepts emphasized in their teaching resources and can make 
informed decisions regarding content alignment and curriculum development. 

Additionally, P(w|z) enables researchers to compare and contrast topics across 
different documents, providing a basis for thematic similarity and distinction 
analysis. This comparative approach proves especially valuable in curriculum 
development, where understanding topic overlap and divergence among 
courses can inform the creation of cohesive learning pathways [32]. LDA's 
probabilistic nature also accounts for the inherent uncertainty in topic 
assignments, offering a nuanced perspective on how themes evolve and interact 
over time. Fang et al. [27] note that this capability is essential for capturing fine-
grained trends within academic literature, allowing educators and researchers 
to track the emergence of new topics and shifts in focus within their fields. The 
insights derived from such analyses can inform instructional strategies and drive 
the continuous improvement of educational content. 

Clustering Techniques for Curriculum Analysis 

K-Means clustering has proven to be a valuable technique in educational 
research, particularly for grouping similar courses and content based on 
keywords and levels of difficulty. As an unsupervised learning algorithm, K-
Means partitions data into distinct clusters, thereby enabling researchers and 
educators to analyze and optimize educational resources and offerings. This 
method has been applied across numerous studies, demonstrating its utility in 
categorizing educational content, assessing student engagement, and tailoring 
curricula to meet diverse learner needs. For example, Ghifari and Putri [33] 
employed K-Means clustering to analyze courses based on student grades, 
effectively grouping courses that exhibited similar performance trends. Through 
the application of the Elbow method to determine the optimal number of clusters, 
they identified distinct course groupings, which informed decisions regarding 
curriculum design and resource allocation. This approach highlights how K-
Means can enhance educators’ understanding of the academic landscape and 
guide their efforts in meeting student needs. 
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K-Means clustering has also been leveraged to analyze student engagement 
and performance data, as demonstrated by Davies et al. [34]. In their study of 
online flipped classrooms, they employed longitudinal K-Means cluster analysis 
to investigate student learning behaviors, identifying patterns that were 
instrumental in refining instructional strategies and improving learning 
outcomes. By clustering students based on their engagement metrics, 
educators were able to tailor interventions and provide targeted support, 
ultimately enhancing student success. This application underscores the 
potential of K-Means in uncovering actionable insights from educational data, 
making it a powerful tool for curriculum analysis and the optimization of teaching 
practices. 

K-Means clustering is equally effective for evaluating course difficulty and 
analyzing content characteristics. Research conducted by Biwer et al. [35] 
focused on university students' self-regulation behaviors during online learning 
amid the COVID-19 pandemic. By clustering students based on their adaptive 
learning strategies, the study revealed insights into how different courses varied 
in terms of required difficulty and support. Such findings enable educators to 
adjust their teaching approaches and provide the appropriate level of challenge 
and assistance to diverse student groups. Kwasi and Gyimah [36] similarly 
utilized K-Means clustering to explore learner typologies in project-based 
learning environments. Their analysis identified distinct student profiles and 
highlighted the varied difficulties students encountered, thereby informing more 
inclusive and accessible course designs. 

Despite its numerous benefits, K-Means clustering does present some 
challenges that must be considered. The algorithm's sensitivity to the initial 
selection of cluster centroids can lead to variability in clustering outcomes, as 
noted by Maulana and Anugrah [37]. Determining the optimal number of clusters 
also involves subjectivity and often requires validation through methods such as 
the Silhouette Score or the Elbow method. Furthermore, researchers must 
ensure that the features selected for clustering, such as keywords and difficulty 
levels, accurately reflect the characteristics of the courses being analyzed. 
These considerations are critical for ensuring that the insights derived from 
clustering analyses are both meaningful and actionable. 

The K-Means clustering algorithm is a fundamental method in data analysis 
used to partition a dataset into k distinct clusters. Its objective function is 
mathematically represented as: 

min∑ ∑|𝑥 − μ𝑖|
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 

In this expression, Ci represents the i-th cluster, μ𝑖 denotes the centroid of that 

cluster, and x refers to individual data points within the cluster. The primary goal 
of the K-Means algorithm is to minimize the total within-cluster variance, 
quantified by the sum of squared distances between each data point and the 
centroid of its assigned cluster. This minimization results in the formation of 
compact and well-separated clusters, where intra-cluster data points exhibit a 
high degree of similarity. 
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The components of the objective function play distinct and essential roles in the 
clustering process. Clusters Ci represent subsets of the dataset, with each 
containing data points that are more similar to each other than to points in other 
clusters. The number of clusters, k, is typically predefined before executing the 
algorithm. The centroid μ𝑖 serves as the representative point for each cluster, 
calculated as the mean of all data points within that cluster, and is iteratively 

updated during the algorithm's execution. The distance metric (|𝑥 − μ𝑖|
2) 

measures the squared Euclidean distance between a data point x and its 
cluster's centroid, serving as a critical factor in determining the quality of the 
clustering outcome. 

The objective function plays a pivotal role in guiding the K-Means clustering 
process. One of its primary functions is to minimize variance within clusters by 
reducing the sum of squared distances between data points and their respective 
centroids. This optimization leads to clusters that are dense and well-defined, 
with minimal intra-cluster distance. The iterative nature of the K-Means 
algorithm involves repeatedly assigning data points to the nearest centroid and 
recalculating centroids based on the current cluster assignments. This process 
continues until convergence, which occurs when data point assignments remain 
unchanged or the centroids stabilize. The minimization of the objective function 
serves as a measure of clustering quality, with lower values indicating tighter 
and more coherent clusters. 

In educational research, K-Means clustering has proven useful for grouping 
similar courses or content based on characteristics such as keywords and 
difficulty levels. Researchers can analyze course descriptions or performance 
data to form clusters of courses with shared features, providing valuable insights 
for curriculum design and resource allocation. This application underscores the 
utility of the K-Means objective function in creating meaningful groupings that 
enhance the understanding of educational content and inform targeted teaching 
strategies. The ability of K-Means to form well-defined clusters based on data-
driven patterns makes it an indispensable tool for educational analysis and 
improvement. 

Importance of Open Educational Resources (OER) 

Open Educational Resources (OER) have emerged as pivotal tools in improving 
access to data science skills training, particularly in an era where data literacy 
and technological competence are becoming critical in many sectors. OER are 
defined as freely accessible, openly licensed educational materials designed for 
teaching, learning, and research. Their ability to remove traditional barriers to 
education, including cost and geographical constraints, underscores their 
transformative impact on the democratization of learning. Guo et al. [38] 
emphasize that the globalization of education has been significantly facilitated 
by the availability of OER, allowing learners from diverse backgrounds to 
engage with high-quality resources. In the context of data science—a field 
marked by rapidly evolving technologies and a growing demand for skilled 
professionals—access to comprehensive, up-to-date educational resources can 
substantially enhance learners' opportunities for career advancement. 

OER's potential extends beyond mere access; they offer a flexible, customizable 
approach to learning that can cater to diverse educational needs. Malykhin et 



Artificial Intelligence in Learning 

 

El Emary, et. al. (2025) Artif. Intell. Learn. 

 

102 

 

 

al. [39] highlight the adaptability of OER in developing critical job skills, as they 
can be tailored to individual learners' career goals and preferred learning styles. 
This adaptability is particularly relevant in data science education, where new 
tools, methodologies, and techniques emerge frequently. By leveraging OER, 
educators can provide learners with customizable pathways to acquire and 
apply essential skills, helping them remain competitive in a fast-changing 
industry. 

Despite their benefits, OER face challenges in terms of quality and relevance, 
which can impact their effectiveness as educational tools. This study aims to 
address these issues by implementing a systematic framework for evaluating 
OER, focusing on quality assessment, user engagement metrics, and alignment 
with industry standards in data science training. Collecting user feedback and 
analyzing how learners interact with these resources will help ensure that OER 
remain relevant and effective for skill development. Palkova et al. [40] suggest 
that OER can promote collaborative and sustainable educational practices, 
underscoring the importance of fostering learning communities around these 
resources. Creating collaborative environments where learners share insights 
and experiences can deepen understanding and encourage the practical 
application of data science concepts. 

Additionally, leveraging technology to enhance the accessibility and usability of 
OER is critical. Incorporating interactive elements, such as real-world projects, 
simulations, and quizzes, can increase learner engagement and improve 
knowledge retention. Tang [41] points out that the shift to digital education has 
heightened the need for effective OER integration to maintain high educational 
standards. This study focuses on developing innovative, technology-driven OER 
solutions to enhance the learning experience for data science students. By 
combining a rigorous evaluation framework, collaborative learning models, and 
interactive technological elements, this research seeks to maximize the potential 
of OER in equipping learners with essential data science skills. 

Method 

The research method employed in this study involves a series of meticulously 
designed steps to guarantee a thorough and precise analysis. Figure 1 presents 
a detailed flowchart that outlines the comprehensive steps of the research 
methodology. 

 

Figure 1 Research Method Flowchart 
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Data Overview 

The Learning Path Index Dataset serves as the foundation for this research, 
providing a comprehensive collection of data science, machine learning, and 
artificial intelligence (AI) courses. Key columns used in the analysis include 
`Keywords_Tags_Skills_Interests_Categories`, `Course_Level`, and 
`Type_Free_Paid`. The `Keywords_Tags_Skills_Interests_Categories` column 
contains relevant tags associated with course content, highlighting skill areas, 
topics, and learning objectives. `Course_Level` indicates the intended 
proficiency level of the course, ranging from beginner to advanced, while 
`Type_Free_Paid` specifies whether the course is freely available or requires 
payment. 

An initial exploration of the dataset revealed a structured but diverse set of 
educational offerings. Summary statistics provided insights into the distribution 
of course types and levels, showcasing the variety of resources available to 
learners. For instance, a significant proportion of courses are categorized as 
beginner-level, reflecting the dataset's focus on foundational skills. The selected 
columns provided a basis for analyzing patterns in course offerings, keyword 
relevance, and accessibility, which are critical to achieving the study's 
objectives. 

Exploratory Data Analysis (EDA) 

To gain a deeper understanding of the dataset, exploratory data analysis (EDA) 
was conducted, focusing on key attributes such as `Course_Level`, 
`Type_Free_Paid`, and `Keywords_Tags_Skills_Interests_Categories`. 
Visualizations played a crucial role in summarizing and interpreting the data. A 
bar chart of the `Course_Level` distribution (Figure 2) revealed that beginner-
level courses dominated the dataset, with fewer offerings at intermediate and 
advanced levels. This pattern underscores the emphasis on introductory 
materials in the dataset, catering to learners new to data science. 

 

Figure 2 Distribution of Course Level 

Another bar chart depicted the distribution of free versus paid courses (Figure 
3). Free courses represented a substantial majority, indicating the dataset's 
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alignment with open educational resource principles. To analyze the keyword 
data, a function extracted and aggregated individual keywords from the 
`Keywords_Tags_Skills_Interests_Categories` column.  

 

Figure 3 Distribution of Free vs Paid Courses 

The top 10 most frequently occurring keywords were identified and visualized 
using a horizontal bar chart (Figure 4). This analysis highlighted core concepts 
such as “machine learning,” “data analysis,” and “artificial intelligence,” which 
align closely with the study's focus on skill development in data science. 

 

Figure 4 Top 10 Most Common Keywords 

Additionally, a word cloud was generated (Figure 5) to provide a visual 
representation of keyword diversity, offering a comprehensive overview of the 
dataset's thematic scope. These exploratory steps provided critical insights into 
the dataset's structure and content, informing subsequent analyses. 
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Figure 5 WordCloud of Keywords 

Preprocessing 

Effective text preprocessing is a crucial step in preparing the data for meaningful 
analysis. The `Keywords_Tags_Skills_Interests_Categories` column in the 
dataset underwent a series of preprocessing steps to transform raw text into a 
structured format suitable for analysis. The first step involved tokenization, 
where the text was split into individual words using a custom simple tokenizer. 
This tokenizer employed a regular expression to extract words while ensuring 
that punctuation and non-alphanumeric characters were excluded. Tokenization 
enabled the representation of each keyword as discrete units, forming the 
foundation for subsequent text processing. 

After tokenization, stop-word removal was performed to eliminate common 
words that do not contribute significant meaning to the analysis. A predefined 
set of English stop words was used to filter out terms such as “and,” “the,” and 
“is,” which occur frequently but do not provide useful insights into the dataset's 
content. Removing these words reduced noise and improved the clarity of the 
processed text. Each tokenized and filtered string was then reassembled into a 
single space-separated text, which became the input for vectorization. 

Vectorization Using TF-IDF 

To numerically represent the processed text, the Term Frequency-Inverse 
Document Frequency (TF-IDF) vectorization method was applied. TF-IDF 
assigns a weight to each word based on its frequency in a specific document 
relative to its frequency across all documents in the dataset. This method 
highlights terms that are particularly unique or relevant within individual records 
while minimizing the impact of commonly occurring words. The processed 
`Keywords_Tags_Skills_Interests_Categories` column served as the input for 
the TF-IDF vectorizer, resulting in a sparse matrix where rows corresponded to 
records and columns represented unique keywords. 

The TF-IDF matrix provided a quantitative basis for analyzing patterns within the 
dataset. Each entry in the matrix reflected the importance of a specific word in 
a given record, enabling downstream analyses such as clustering and topic 
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modeling. A sample of the generated matrix demonstrated the successful 
transformation of textual data into a numerical format. Additionally, the feature 
names extracted from the TF-IDF process revealed the most significant 
keywords in the dataset, highlighting terms central to data science, machine 
learning, and AI education. This preprocessing pipeline ensured that the text 
data was clean, structured, and ready for advanced analytical techniques. 

Result and Discussion 

Topic Modeling Results 

The application of Latent Dirichlet Allocation (LDA) to the dataset revealed five 
distinct topics, each characterized by unique sets of keywords. Topic 1 focused 
on terms related to data processing and cloud infrastructure, with keywords such 
as "data," "pipelines," "dataflow," and "cloud," reflecting its alignment with 
scalable machine learning systems. Topic 2 encompassed advanced neural 
network techniques, featuring keywords such as "neural," "recommendation," 
"autoencoders," and "attention," indicating a focus on deep learning and 
specialized models. Topic 3 emphasized machine learning pipelines and feature 
engineering, with terms such as "pipeline," "feature," "tfx," and "tensorflow" 
dominating the topic. Topic 4 was centered on machine learning applications in 
cloud environments, including "bigquery," "engineer," "nlp," and "tensorflow." 
Finally, Topic 5 addressed ethical considerations in AI, with keywords like 
"ethics," "mlops," "responsible," and "generative," highlighting its focus on 
responsible AI practices. 

A table summarizing the most frequent keywords and example course titles for 
each topic provided a clearer understanding of the dataset's thematic structure. 
For instance, courses in Topic 1 related to data pipelines were strongly 
associated with terms like "processing" and "cloud," while Topic 2 emphasized 
advanced neural architectures with a focus on models like autoencoders and 
attention mechanisms. This analysis offered insights into the alignment between 
courses and key skill areas, enabling educators and learners to identify the most 
relevant resources. 

Clustering Results 

The K-Means clustering algorithm grouped the courses into five distinct clusters 
based on their topic distributions. Cluster 0 primarily included foundational topics 
in machine learning, with entries such as "supervised learning" and "machine 
learning." Cluster 1 reflected a mix of introductory and conceptual topics, as 
evident from phrases like "problem statement" and "reducing loss." Cluster 2 
focused on optimization and feature engineering, with keywords such as 
"learning rate" and "feature crosses." Cluster 3 highlighted fairness and bias in 
AI, demonstrated by entries like "fairness" and "identifying bias." Lastly, Cluster 
4 contained topics on representation and toolkit development, with terms such 
as "tensorflow toolkit" and "representation." 

A scatterplot of the clusters, based on the first two components of the LDA topic 
distribution, illustrated the separation between clusters. Observable trends 
suggested that beginner-friendly clusters, such as Cluster 0, were distinct from 
advanced technical clusters, such as Cluster 3. The balanced distribution of 
cluster sizes indicated a broad representation of skill levels and focus areas, 
with Cluster 1 being the largest and Cluster 4 the smallest. This clustering 
provided a nuanced view of course organization, aiding in curriculum design and 
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resource recommendations tailored to specific learner needs. 

The remaining topics, while less frequent, show relatively balanced distributions, 
with Topics 1, 2, 3, and 4 covering advanced neural network techniques, pipeline 
and engineering tools, cloud-specific applications, and AI ethics, respectively. 
The variation in topic frequency reflects the diverse nature of the dataset and 
aligns with the need to cater to learners with different expertise levels and 
interests. 

Clusters are distributed across the two components, showing distinct groupings. 
Cluster 0 includes foundational topics and appears densely packed, reflecting 
similarity in courses focusing on basic machine learning concepts. Cluster 3, 
focusing on fairness and bias in AI, is more spread out, highlighting diversity in 
the types of content in this cluster. Clusters such as Cluster 2 and Cluster 4 
display intermediate separation, likely representing specialized topics like 
feature engineering and advanced neural networks. 

The figure showcases the ability of K-Means to partition courses effectively 
based on their topical similarity, providing an organized structure for 
understanding content groupings. This separation can aid in creating tailored 
learning paths or targeted recommendations for users with specific educational 
needs. 

Skill Coverage and Educational Gaps 

The topic modeling and clustering results reveal important insights into the 
distribution of skills across the Learning Path Index Dataset, highlighting both 
gaps and redundancies in the resources provided. Topics extracted through 
Latent Dirichlet Allocation (LDA) show a strong focus on foundational data 
science and machine learning concepts, such as "data pipelines," "cloud 
processing," and "machine learning training" (Topic 1 and Topic 4). Advanced 
topics like neural network architectures and recommendation systems (Topic 2) 
and ethical considerations in AI (Topic 5) are also represented but are less 
prevalent. This imbalance indicates that while the dataset provides significant 
coverage for foundational skills, more advanced and niche topics, such as 
ethical AI and optimization strategies, may be underrepresented. Additionally, 
topics like "fairness" and "bias" in Cluster 3 show limited scope, suggesting 
potential gaps in coverage for equity and inclusivity in AI training. 

Another observed pattern is the accessibility of beginner resources compared 
to advanced ones. Clusters such as Cluster 0, which focuses on introductory 
machine learning concepts, and Cluster 1, with basic terminologies and loss 
functions, are significantly larger in size, as evidenced by their distributions (328 
and 330 entries, respectively). These clusters dominate the dataset, indicating 
that beginner-level content is readily available and more accessible to learners. 
However, advanced resources, such as those focusing on representation 
learning and feature engineering in Cluster 4, are smaller in size (200 entries). 
This suggests a disparity in the depth and breadth of content available for 
advanced learners, potentially hindering their ability to access specialized 
resources. 

Cluster Analysis and Resource Distribution 

The K-Means clustering results further highlight key trends in resource 
characteristics, such as average course duration, difficulty levels, and free vs. 
paid content distribution. Cluster 0 predominantly contains short-duration 
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beginner courses that are primarily free, emphasizing accessibility and 
foundational knowledge. Conversely, Cluster 4, which focuses on advanced 
concepts like "representation" and "feature engineering," tends to include 
longer-duration courses with a mix of free and paid options. This variation 
underscores the need for balanced resource availability to ensure that learners 
at different skill levels have equitable access to quality materials. 

A summary of the clusters also reveals redundancies in foundational topics. 
Clusters 0 and 1 both focus on introductory machine learning concepts, creating 
overlap that might result in inefficient use of resources. Conversely, gaps are 
evident in areas like ethical AI (Cluster 3), which has fewer resources despite its 
growing importance in the field. Furthermore, the distribution of courses in 
Cluster 3 suggests a lack of diversity in content, as most entries focus narrowly 
on topics like "fairness" and "bias" without expanding into related areas such as 
algorithmic transparency or responsible deployment. 

Implications and Recommendations 

These findings suggest that while the dataset provides a solid foundation for 
learners at the beginner level, advanced learners may encounter challenges in 
accessing high-quality, specialized resources. The observed redundancies in 
introductory topics could be addressed by consolidating overlapping content and 
reallocating efforts toward underrepresented areas, such as ethical AI and 
advanced optimization techniques. Additionally, increasing the availability of 
free, high-quality advanced courses could bridge the accessibility gap and cater 
to learners seeking to deepen their expertise in specialized topics. 

In conclusion, the skill coverage and clustering analysis highlight both strengths 
and weaknesses in the dataset's educational offerings. Addressing the identified 
gaps and redundancies through strategic content development and improved 
curation practices could enhance the dataset's overall effectiveness, ensuring 
that learners at all levels can access resources tailored to their needs. These 
improvements would contribute to the broader goal of fostering equitable access 
to data science education. 

Educational Implications 

The findings from the topic modeling and clustering analysis offer valuable 
insights into improving the organization and accessibility of data science 
resources in open education. The identification of distinct topics, such as "data 
pipelines" and "neural networks" (Topic 1 and Topic 2), suggests a need to 
streamline resources around these themes to avoid redundancy and better align 
them with learners’ needs. The clustering analysis revealed a dominance of 
beginner-level resources in Clusters 0 and 1, which primarily focus on 
foundational topics such as "machine learning basics" and "terminologies." 
While this is beneficial for newcomers, the lack of balance in advanced topics, 
particularly those in Cluster 4 (e.g., "representation learning" and "feature 
engineering"), highlights the need for expanded content to cater to more 
experienced learners seeking specialized skills. 

To address these disparities, educators and platform developers can adopt a 
targeted approach by enhancing the depth and diversity of advanced-level 
resources. For example, creating comprehensive learning paths that build upon 
beginner courses and transition seamlessly into advanced topics such as 
"MLOps" (Topic 5) or "ethical AI" (Cluster 3) could bridge the existing gaps. 
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Additionally, integrating practical projects and case studies into these courses 
can reinforce complex concepts, ensuring learners not only acquire theoretical 
knowledge but also gain real-world applicability. This structured progression 
would help maintain learner engagement across skill levels and foster a more 
holistic understanding of data science. 

From an accessibility standpoint, the clustering results underline the importance 
of making advanced resources as widely available as their beginner 
counterparts. Clusters focusing on specialized topics, such as "TensorFlow 
engineering" and "responsible AI," are often underrepresented and, in many 
cases, locked behind paid access. This disparity limits opportunities for 
underprivileged learners to advance their expertise. To counter this issue, open 
educational platforms could consider offering a mix of free and paid advanced 
courses, with scholarship options or modular access to key topics. Furthermore, 
integrating interactive elements such as quizzes, simulations, and peer-based 
learning communities into these resources can enhance accessibility by 
promoting collaborative and self-paced learning. 

Lastly, the implications for educators extend to curriculum design. The insights 
from clustering analysis can inform the development of modular and adaptive 
learning pathways, allowing instructors to guide students through a logical 
progression of topics. For instance, courses identified in Cluster 2, which focus 
on "optimization techniques" and "feature engineering," could be recommended 
as prerequisites for more advanced content in Cluster 4. Similarly, content 
addressing ethical considerations in AI (Cluster 3) should be incorporated early 
in the learning journey to instill critical thinking about responsible practices in 
technology. These adjustments can create a more inclusive and effective 
learning environment, supporting diverse learner goals and fostering broader 
participation in data science education. 

Conclusion 

This study explored skill patterns in open-access data science resources using 
topic modeling with Latent Dirichlet Allocation (LDA) and clustering with K-
Means. The analysis identified five distinct topics, including foundational themes 
like "data pipelines" and "machine learning basics" as well as advanced areas 
such as "MLOps," "ethical AI," and "representation learning." While beginner-
level resources were abundant, advanced topics were comparatively 
underrepresented, particularly in clusters addressing specialized domains. 
Additionally, resources focusing on emerging skills, such as "generative AI" and 
"feature engineering," were largely confined to paid offerings, highlighting 
accessibility disparities. These findings reveal significant educational gaps in the 
availability and distribution of advanced and accessible resources. The 
clustering results also emphasized overlaps and redundancies in some 
foundational skills while showcasing limited depth in advanced skills. Courses 
grouped under beginner-level clusters often focused on similar topics, 
potentially leading to learner saturation in basic concepts. In contrast, advanced 
learners faced challenges in finding comprehensive, freely accessible content 
for their specific needs. This imbalance underscores the importance of refining 
educational resources to ensure balanced skill coverage and equitable access. 

The insights from this study have significant implications for promoting 
accessible, skill-aligned resources in data science education. Open educational 
platforms and course providers can leverage these findings to design more 
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comprehensive learning paths that address both beginner and advanced learner 
needs. Providing modular access to advanced content, such as "MLOps" and 
"neural networks," alongside foundational courses can enhance skill 
progression. Additionally, blending free and paid content models, especially for 
advanced topics, could improve accessibility for learners from diverse 
socioeconomic backgrounds. Furthermore, resource providers can optimize 
their content by addressing redundancy in foundational skills and tailoring 
advanced resources to industry demands. This could involve integrating real-
world projects and interactive elements, such as quizzes and collaborative 
activities, to enhance learner engagement. Focusing on underrepresented skills, 
such as "AI ethics" and "data representation," can align resources with critical 
industry trends, thereby equipping learners with comprehensive and future-
ready competencies. 

Future research could extend this analysis to validate the observed skill patterns 
across larger, more diverse datasets. Expanding the scope to include other 
fields, such as healthcare analytics or environmental data science, could 
uncover discipline-specific gaps and inform resource development in those 
areas. Additionally, incorporating learner feedback into topic modeling and 
clustering could provide a more nuanced understanding of how learners 
perceive and engage with these resources. Further investigation is also 
warranted to explore the impact of cultural and linguistic factors on the 
accessibility of educational resources. Analyzing global datasets could highlight 
region-specific challenges and guide the creation of localized resources that 
cater to learners' unique needs. Moreover, integrating advanced machine 
learning techniques, such as neural topic models, could improve the granularity 
of topic identification and provide deeper insights into skill patterns. 

The study faced several limitations, including constraints in dataset size and 
scope, which may affect the generalizability of the findings. The analysis was 
limited to a predefined number of topics and clusters, potentially overlooking 
subtler themes or patterns within the dataset. Additionally, the reliance on text 
data from course descriptions and keywords may not fully capture the 
instructional quality or depth of these resources. Another limitation was the focus 
on only one domain—data science—within open education. As open 
educational resources span numerous fields, findings from this study may not 
translate directly to other disciplines. Addressing these limitations in future 
research, such as by incorporating multimodal datasets or expanding to cross-
disciplinary analyses, could enhance the robustness and applicability of the 
results. 
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